Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the wordpress-seo domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /www/admin/www.colossusjinxin.com_80/wwwroot/wp-includes/functions.php on line 6121
60年首次:AI发现新抗生素,有望对抗超级细菌 - 公益知识分享
675 次浏览

60年首次:AI发现新抗生素,有望对抗超级细菌

整整60年,人类在抗生素研究方面没有取得任何重要进展。

然而,这一空白被AI打破了!

最近,MIT的科学家们利用AI发现了一种全新的抗生素类别,用于对抗耐药性金黄色葡萄球菌(MRSA)。

21名研究者共同撰写了这篇论文,登上了Nature。

论文地址:https://www.nature.com/articles/s41586-023-06887-8

MRSA细菌,又称耐药金黄色葡萄球菌,已经困扰了人类多年。感染者轻则皮肤感染,重则感染肺部和血液,甚至危及生命。

根据欧洲疾病预防控制中心(ECDC)的数据,欧盟每年有近150000例MRSA感染,而每年死于抗菌素耐药性感染的有近35000人。

而发现对抗MRSA全新抗生素的,就是一种可解释的图神经网络。

在数百万化合物中筛选,研究人员在小鼠中测试了283种有前景的化合物,其中几种对MRSA有治疗效果。

LeCun、Tegmark等AI界的大佬纷纷动手转发了这一AI的重磅发现。

通过深度学习模型,AI又一次改变了医学领域的游戏规则。

有人表示,这更证实了a16z bio+health的创始人的观点:「AI是来治愈人类的,不是来杀死人类的。

AI发现新型抗生素,280多种候选

这项发明,是人类对抗抗生素耐药性的转折点。

MIT医学工程与科学教授James Collins表示,通过这项研究,我们可以看到为了预测哪些分子可以成为良好的抗生素,AI模型是如何学习的。

从化学结构的角度来看,我们的工作提供了一个在迄今为止从未有过的框架,在时间和资源上都很高效,同时具备深刻的洞察力。」

为了预测全新化合物的活性和毒性,团队使用的是深度学习模型。

模型使用人工神经网络自动从数据中学习和表征数据,无需显式编程。

这种图神经网络,越来越多地被用于药物发现中,来加速识别潜在的候选药物,预测其特性,并且优化药物的开发过程。

用于预测抗生素活性和人细胞毒性的深度学习模型的集成

为了研究耐甲氧西林金黄色葡萄球菌 (MRSA),MIT的研究团队使用扩展的数据集,训练了一个广泛扩展的深度学习模型。

为了创建训练数据,团队评估了大约39000种化合物对MRSA的抗生素活性。

随后,他们将所得数据和有关化合物化学结构的细节,输入到模型中。

论文主要作者之一、MIT工学院和哈佛博士后Felix Wong表示,这个过程,仿佛就像在打开一个黑匣子。

「这些模型由模拟神经连接的超大规模数字计算组成,没有人真正知道引擎盖下面究竟发生了什么。

化学空间的过滤和可视化

为了完善潜在药物的选择,研究人员又引入了3个深度学习模型。他们对这些模型进行了训练,以评估化合物对三种不同类型人类细胞的毒性。

通过将这些毒性预测与之前确定的抗菌活性相结合,研究人员准确地找到了能够有效对抗微生物,同时对人体伤害最小的化合物。

利用这套模型,他们筛选出了大约1200万种市售化合物。最终,这些模型确定了5种不同类别的化合物,根据分子中特定的化学结构进行分类,这些化合物对MRSA具有预测的活性。

随后,研究人员获得了其中约280种化合物,并在实验室环境中对MRSA进行了测试。通过这种方法,他们从同一类化合物中发现了2种最有希望的候选抗生素。

果然,在涉及两种小鼠模型(一种是MRSA皮肤感染模型,另一种是MRSA全身感染模型)的实验中,每种化合物都能将MRSA的数量减少10倍以上。

可预测抗生素结构的图神经网络

研究人员推断,可以使用神经网络模型来学习,与抗生素活性相关的化学子结构,从而预测相关的抗生素结构。

研究人员开发了一个叫做Chemprop的图神经网络平台,通过可解释的、基于子结构的方法,来引导探索化学空间。

可解释的人工智能

研究人员使用的图神经网络,包含了每个分子的原子和键中的信息,以现实中的子结构为依据进行预测。

确定这个基本原理可以为模型的可解释性提供保证:符合子结构规律的化合物将得到更高的分数。

利用这种方法,模型可以从大型化学库中识别潜在的抗生素:从药物再利用中心(包括约6000个分子)中发现了halicin和abaucin,并从ZINC15库(约1.07亿个分子)中发现了其他抗菌化合物。

通过在测量抗生素活性和人类细胞毒性的大型数据集上进行训练,极大地扩展了用于抗生素发现的图神经网络模型,并且假设可以使用图搜索算法在化学子结构水平上解释模型预测(如下图所示)。

由于抗生素类别通常是在共享子结构的基础上定义的,因此,子结构识别可以更好地解释模型预测,有效地探索化学空间,并促进发现新的结构类别。

基于这个训练有素的Chemprop模型,利用图的搜索算法,研究人员能够在单个分子的背景下确定具有预先指定阈值的原子数。

使用蒙特卡洛树搜索来确定包含至少8个原子并表现出大于0.1的高抗生素预测分数。

如上图a所示,蒙特卡洛树搜索包括选择初始子结构,迭代修剪子结构,以及选择删除,当子图作为输入传递到Chemprop时,预测得分很高。

过滤和可视化化学空间

研究人员用所有训练数据集重新训练了20个Chemprop模型的集成,从而产生了四个预测抗生素活性、HepG2细胞毒性、HSkMC细胞毒性和IMR-90细胞毒性的集成。

使用这些集成来预测12076365种化合物的抗生素活性,和细胞毒性特征,其中包括来自Mcule数据库的11277225种化合物,还有来自Broad Institute数据库的799140种化合物(如下图所示)。

根据预测的抗生素活性和细胞毒性过滤了感兴趣的化合物,最初仅保留了Mcule库中抗生素预测评分大于0.4的3004种化合物,以及从Broad Institute库中保留了抗生素预测评分大于0.2的7306种化合物。

上图是抗生素预测得分高和低的化合物(t-SNE图),显示了各种化合物的化学相似性或不相似性。

接下来看一下模型发现的化合物是否具有抗生素的效果。

这里研究了化合物1在局部和全身给药时,对小鼠治疗MRSA的疗效。

实验使用氨基糖苷类和耐四环素的MRSA临床分离株,在中性粒细胞减少小鼠浅表皮肤感染模型中,测试了局部给药。

与载体相比,用化合物1处理可将平均细菌载量降低约1.2个对数(如下图所示),显示出与complestatin和corbomycin相似的功效。

接着,研究人员使用MRSA的噁唑烷酮(oxazolidinone)耐药临床分离株,进一步测试了小鼠中性粒细胞减少性大腿感染模型中,化合物1的全身给药。

与载体处理相比,用80mg/kg的化合物1处理可显著降低平均细菌负荷约1.2个log(如下图所示)。

化合物1在大腿感染模型中的功效表明,化合物1和2,以及其它结构类似的化合物,可以作为新型候选抗生素进行开发。

AI比人类更快地挖掘数据集

「科学美国人」对研究背后团队的一篇采访中,更具体阐述了研究人员对AI在医学领域中作用的观点。

问:人工智能在筛选和识别新的抗生素化合物方面比人类有什么优势?

一般来说,人工智能和机器可以系统地、非常快速地挖掘结。或任何类型的数据集。

传统上,科学家大约需要花费12年的时间,才能发现一种新的抗生素。然后,再到发现任何临床候选药物,还需要3-6年的时间。

最后,你还需要将它们过渡到I期、II期和III期临床试验。

而现在,有了机器,便能够加速这一进程。

以我和同事的工作为例,我们现在可以在几小时内,发现数千,甚至数十万临床前候选药物,而无需等待3-6年。

总的来说,是人工智能帮我们实现了这一点。

问:为了将这类新的抗生素转化为临床药物,需要后续采取哪些步骤?

这里还是一个空白领域。你需要系统的毒性研究,然后是IND研究。

美国食品药品监督管理局会要求你进行这些研究,以评估这一令人兴奋的药物,是否可以过渡到I期临床试验。这是任何临床试验的第一阶段。

同时,我认为,这是AI在微生物学和抗生素领域取得一个非常令人兴奋的进步,我梦想有一天可以创造出能够拯救生命的抗生素。

问:这项新研究中确定的化合物,对小鼠体内的MRSA等微生物有有效的杀灭作用,对吗?

是的,他们在两种小鼠模型上进行了展示。有趣的是,研究表明这些化合物实际上能够减少小鼠模型中的感染

作为利用AI的另一个例子,我们最近在实验室中挖掘了已经灭绝生物的基因组和蛋白组,能够确定许多临床抗生素候选药物。

问:为什么让人工智能模型「可解释」,这一点很重要?

我认为,如果有一天我们将AI视为一门工程学科,这一点很重要。

在工程学中,你总是能够拆开构成某种结构的不同部件,你知道每一块都在做什么。但在人工智能和深度学习情况下,由于它是一个黑匣子,我们不知道中间过程会发生什么。

所以,开始挖掘「黑盒」以了解每个步骤中实际发生的事情,这对于我们将AI转化为工程学科是关键的一步。

正确方向的第一步是使用可解释的AI,以试图理解机器实际在做什么,让它变得不再是一个黑盒。

XZY

 

发表评论